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The linear spin-up of a homogeneous electrically conducting fluid confined be- 
tween infinite flat insulating plates is analyzed for the case in which a uniform 
magnetic field is applied normal to the boundaries. As in part 1 (Benton & Loper 
1969)) complete hydromagnetic interaction is embraced even within linearized 
equations. Approximate inversion of the exact Laplace transform solution re- 
veals the presence of several flow structures: two thin Ekman-Hartmann 
boundary layers (one an each plate), which are quasi-steady on the time scale 
of spin-up, two thicker continuously growing magnetic diffusion regions, and an 
essentially inviscid, current-free core, which may or may not be present on the 
spin-up time scale, depending upon the growth rate of the magnetic diffusion 
regions. When a current-free core exists, it is found to spin-up at  the same rate 
as the fluid within magnetic diffusion regions, although different physical 
mechanisms are at  play. As a result, a single hydromagnetic spin-up time is 
derived, independently of the thickness of magnetic diffusion regions ; this time 
is shorter than in the non-magnetic problem. 

1. Introduction 
As stated in part 1, we analyze the prototype linear hydromagnetic spin-up 

problem for an electrically conducting fluid, namely impulsively generated 
spin-up from one angular velocity C2 to the slightly different value Q( 1 + e) in a 
‘container’ formed by two infinite insulating disks. The imposed magnetic field, 
whose flow-induced distortion produces the electric currents necessary to com- 
plete the hydromagnetic coupling, is simply a uniform field B, perpendicular to 
the plates, which are situated at  z = & d. 

The notation, methodology, and results are direct, but interesting, extensions 
of those developed in part 1. Only the most important previous ideas are repeated 
here; self-containment of the present paper is deliberately sacrificed to conserve 
space. Frequent references to the earlier work will be necessary. 

In $ 2  a heuristic discussion of the hydromagnetic spin-up is given together 
50 F L M  43 
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with a derivation of the spin-up time. This gives way, in tj 3, to  an exact mathe- 
matical formulation, and, in tj 4, to the solution in the Laplace transform plane. 
Section 5 presents the approximate inversion, thereby confirming the conjec- 
tures of 9 2. Results are summarized in 8 6. 

2. Preliminary discussion 
The following results, derived in Gilman & Benton (1968) and in part 1, are 

indispensable for understanding the problem at hand. 
(i) When a weak but steady difference in angular velocity is maintained between 

a single insulating flat plate and the electrically conducting fluid far from it, the 
steady flow field consists of two regions. An Ekman-Hartmann boundary layer 
exists to  provide for the transition required of the angular velocity. Ekman 
suction (or blowing) velocity within this region, and also outside of it, is inhibited 
(compared to non-magnetic flow), because of the imposed axial magnetic field. 
Outside this boundary layer is a steady spatially uniform effectively inviscid 
‘magnetic diffusion region’, which extends to axial infinity; an axial Hartmann 
electric current flows in it in the same sense as the axial Ekman velocity, having 
been induced by the shearing motion within the Ekman-Hartmann boundary 
layer. 

(ii) The impulsively started, time-dependent approach to  this steady state 
is characterized by three regions of flow (refer to figure 4 of part 1). A quasi- 
steady Ekman-Hartmann layer forms within a few boundary revolutions 
following the impulse. A much thicker magnetic diffusion region is called into 
existence to reduce the axial Hartmann current to zero at infinity by turning it 
into the radial direction; this region continually diffuses at the resistive rate, 
never becoming steady until it has reached infinite thickness. At finite times there 
is, beyond this region, a continuously shrinking current-free inviscid core, in which 
the Ekman velocity is larger than in non-magnetic flow (the enhancement being 
due to  weak secondary motions, akin to Ekman pumping, induced within the 
magnetic diffusion region). 

These results are next applied to the situation in which a second plate is 
present, at  distance 2d from the original one; the fluid now spins up to the new 
angular velocity (if E > 0, which we take it to be for purposes of discussion). 
Relying on a result of the well-understood non-magnetic problem (Greenspan & 
Howard 1963), we adopt the working hypothesis (verified in $ 5  below) that, at 
least for sufficiently early times, each boundary disturbs the flow in the same 
way as if it were acting in isolation; i.e. individual Ekman-Hartmann layers and 
magnetic diffusion regions are assumed to develop near each plate, exactly as in 
part 1. However, the existence of an external length scale in the two plate 
geometry (the plate separation, 2d) implies that now the fluid dynamics can 
depend upon two parametric degrees of freedom not present in the isolated plate 
problem of part 1:  namely, (a) the ratio of Ekman-Hartmann depth to total 
fluid depth, and (b )  the ratio of the thickness of a magnetic diffusion region to 
total fluid depth. Each Ekman-Hartmann layer quickly reaches a quasi-steady 
thickness of order p- l (v /Q)g  (cf. part 1, (55)-(59)) so the first ratio is (2P)-1E* 
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where the Ekman number E is vld2Q. Because ,4 1 (part 1, ( 5 2 ) )  and the 
physically interesting situation requires E < 1, we need only consider the case 
in which Ekman-Hartmann layers occupy a negligible fraction of the total fluid 
depth. For the second ratio, attention is restricted to the moderate range of 
field strengths a < O( 1)) so that the Alfvkn mode is not; strongly present. Then 
unsteady magnetic diffusion regions are of thickness a(&)* (see part 1 following 
(79))) so their proportion of the total fluid depth is of order (Er/S)*, where S 
is the magnetic Prandtl number v/A, and 7 = Qt. Since S as well as E is typically 
much smaller than one, no definite bounds can be placed on this ratio, and we 
must expect the possibility that spin-up depends strongly on the relative thick- 
ness of magnetic diffusion regions. 

Consider first the situation where Er, < 6 < 1 (7, is the, as yet undetermined, 
non-dimensional spin-up time), so that the magnetic diffusion regions, as well 
as the Ekman-Hartmann layers, remain thin throughout spin-up (see figure 1). 
The bulk of the fluid is 'then an inviscid, current-free core, which must accordingly 
spin-up by exactly the same mechanism as in the non-magnetic problem: con- 
servation of angular momentum for fluid rings driven radially inward by Ekman 
secondary flow. In  the present case, the driving secondary flow in the inviscid 
core is stronger, by a factor p, than in the non-magnetic case, because the Ekman 
suction at  the outer edge of the magnetic diffusion region is so enhanced (part 1, 
(84)). Consequently, the spin-up time is estimated by oonventional methods (e.g. 
Greenspan 1968, $2.4) to be 

and the inequality above is satisfied if E* < S < 1.  The non-dimensional azi- 
muthal velocity function (refer to part 1, (6)) is in this case expected to be 

7, Qt, = P-IE-4, (1) 

V(7)  = 1 - exp ( - pEh-7). (2) 
For non-magnetic flow a = 0, ,8 = 1 so r, = E A ,  as in Greenspan & Howard's 
problem. Spin-up of an inviscid current-free core by hydromagnetically en- 
hanced Ekman secondary flow is predicted to be never slower than the classical 
spin-up. 

If, on the other hand, 6 < Er, < 1, then the magnetic diffusion regions 
rather quickly (i.e. for r N SIE < 7,) reach thicknesses comparable with d ;  
in a linear problem such as this, it  may be supposed that in their subsequent 
diffusion they overlap or inter-penetrate each other but do not undergo any 
strong amplifying nonlinear interaction (see figure 2 ) .  (It is important to recall 
that, according to part 1, the perturbations induced within such regions are 
weak, of order S* < 1.) Thus, the pictureemerges of two thin quasi-steady Ekman- 
Hartmann layers separated by an inviscid but resistive, current-carrying hydro- 
magnetic core, within which spin-up takes place by the joint action of Ekman 
secondary flow (which is weaker than in the non-magnetic case; refer to part 1, (69) 
and figure l), and an electromagnetic body torque arising from a Hartmann 
current system in meridional planes (figure 2; part 1, (69) and figure 2). Mathe- 
matically this situation is described by the inviscid version of the tangential 
momentum equation combined with conservation of mass (part 1, (12), (16)): 

v, = ( w + 2or2B),. (3) 
50-2 
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Recognizing that B measures the Hartmann current (part 1, (lo)), that it is in 
the same sense as the axial Ekman flow (Gilman & Benton 1968), and that it 
obeys the same symmetry restrictions (and, in this case, boundary conditions) 
as W ,  we estimate the spin-up time in terms of W + 2a2B evaluated at  the outer 
edge of the very thin quasi-steady Ekman-Hartmann layers. For the case at  

7 - 7 7  

FIGURE 1. Magnetic diffusion region thin during spin-up : -, schematic meridional topology 
of lines tangent to volocity field; - -, electric current; EHL, Ekman-Htlrtmann layer; 
MDR, magnetic diffusion region. 

hand, where the magnetic diffusion regions are much thicker than the Ekman- 
Hartmann layers, the appropriate expression is obtained by letting r -+ 00 in (69) 
of part 1 ,  which gives 

(4) 

(51 

2i 2(Y + iP)  W 2 i B  ---=-- 
l +  l -  p+zy p + y 2  * 

Consequently, 
2 

Wl + 2a2B1 = - ~ (Y + a”) = - P, 
P2 + Y 2  

where use has been made of the definitions of P, y (part 1, (52) ) .  Since this value 
is maintained at the edge of thin, quasi-steady Ekman-Hartmann layers (i.e. at  
x + f d,  which is < + E-4 in the scaled variables of part l), the estimated 
dimensionless spin-up time is again P-lE-4. Apparently, the reduction in Ekman 
suction from the classical value due to inhibited Ekman pumping in the Ekman- 
Hartmann layers is exactly compensated by the accelerating electromagnetic 
body torque arising from the Hartmann electric current system. The conclusion 
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is that, if our approximations are well-founded, then spin-up proceeds at  the 
same rate whether the magnetic diffusion regions are very thin or very thick. 

The same reasoning applied to the intermediate case where these regions are 
thick compared to the Ekman-Hartmann layers, but not comparable in thick- 
ness with the total fluid depth, suggests that fluid both inside and outside the 

/ /  

a Insulating boundary (c=O) 
/ / / / /  / /  / / / / /  / / / /  / /  / /  / / / / / / / /  

/- +- 

-*- 
MDR 

I 

I / /  / / / / / / / / / / / / / /  / / /  / / / / / / /  / / / 
Insulating boundary (a=O) 

EHL 

- 

magnetic diffusion regions spins-up in unison (but because of distinctly dif- 
ferent physical mechanisms). In  effect, a Taylor-Proudman constraint appears 
to be operating, so that the angular velocity remains independent of depth within 
and outside the magnetic diffusion regions. We therefore anticipate no dependence 
of spin-up time on the ratio (E/6),  and this result is confirmed by the more 
rigorous analysis which follows. 

3. Mathematical formulation 
For impulsively started hydromagnetic spin-up in the two-plate geometry, the 

fundamental equations are still (1)-(3) of part 1, but the initial and boundary 
conditions now take the form: 

at  t = 0, v = TO$, B = BOB, (6) 

for t > 0, at  x = rf: d,  v = TO( 1 + E )  8, B continuous. (7) 
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The occurrence of the external length d in the present problem makes certain 
changes in scaling desirable. For example, z is scaled with d rather than Ekman 
depth, in order to remove parameters from the boundary conditions. The previous 
scaling for the horizontal components of both v and B (part 1, (6), (8)) is retained, 
so that the corresponding non-dimensional functions are still expected to be 
independent of kinematic viscosity outside of Ekman-Hartmann layers (i.e. 
of order 1 or less with respect to E, 6). Also, an added pressure function is now 
necessary, because the fluid depth is finite. Equations analogous to (6)) (71, (8), 
(10) of part 1 are 

v(r ,z , t )  = r ~ B + ~ € [ r ~ ( 5 , r ) P + r ~ ( 5 , r ) 8 + d ~ ( 5 , ~ ) h Z l ,  (8) 
n(r, z, t )  = +r2Q2+ $Q2E[r2P(r) + 2d2Q(5, T)], 

B(r, z, t )  = B,hZ + B,pg(vQ)ge[rA(C, 7 )  P+rB(C, r )  8+ dC(& r)2],  
(9) 

(10) 

1 aB aA 
j ( r , z , t )  = p - l V x B  = B,a(vQ)*d-% -r-P+r-8+2dBhZ , (11) 

The linearized, unsteady perturbation problem now forms a three-parameter 

[ ac ac 
where 5 = z/d, r = at. 

set : 
U, - EU,, = 2 V + 2a2E4Ag - P, 
V,  - EF, = - 2 U + 2a2E4B,, 

SAT - EA,, = EhU,, 

SB, - EB,, = EhQ, 

SC, - EC,, = E", 
w, = - 2u, 

C, = - 2A, 

Qs = EWgs- W,. 

The three dimensionless parameters are given by 

4 
a = (h) B, = magnetic interaction parameter, (20) 

S = v /h  = opv = magnetic Prandtl number, 

E = v/d2Q = Ekman number. 

For the physical situations of interest, both E and 6 are much smaller than one. 
In  part 1 it was seen that the transition from weak to  strong magnetic effects 
occurs for a of order 1, so in the present problem we will ultimately deal only with 
a < O(1). 

The initial and boundary conditions for the system (12)-( 19) are: 

(23) 

f o r r > O ,  a t < = + l ,  V = l ,  U = W = A = B = C = O ,  (24) 

a t 7  = 0, U = V = W = P = Q = A  = B = C = 0, 

where (as in part 1) the perturbation magnetic field vanishes throughout the 
insulating half-spaces and therefore vanishes at 5 = k 1 by continuity of the 
field. 
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In  terms of the complex quantities, 

which contain the main functions of interest, the problem is compactly expressed 

(27) 
as 

( 2 8 )  

P ( ? l , ~ ) = i ,  F a { =  0. ( 2 9 )  

F, - EFss + 2iF = 2a2E4Mc - P(7), 

SM7 - EM,, = E4Fs, 

It is readily verified that Greenspan & Howard's non-magnetic problem is 
recovered from (27) in the limit a + 0. 

It is useful at  this point to prove that, as predicted above, the fluid outside of 
the Ekman-Hartmann boundary layers does in fact spin-up in the columnar 
fashion consistent with the Taylor-Proudman theorem, regardless of the thick- 
ness of magnetic diffusion regions. This follows from an examination of (27 )  or 
(28)  on suitably stretched spatial and temporal scales. For the restricted range 
of interest for a ( < O( l)), /3 is of order 1, so the Ekman-Hartmann layers are of 
order EB in thickness. To represent spatial variations on scales greater than that, 
[is stretched by setting 5 = E)-a5*, where c* is of order 1 and 0 < a < 4 (because 
a = 0 gives the scale of an Ekman layer and a = 4, that of the plate separation). 
The appropriate time scale is that for spin-up, which, for p = O( 1))  is anticipated 
to be of order E-4 (short-period oscillations and initial boundary-layer develop- 
ment are thereby filtered out of this analysis). So let 7 = E-47* with 7* = O( 1).  
The basic functions, P, M ,  P ar0 properly scaled to  be of order 1 or less within the 
core (as can be partially seen from (27)) (29)) which together suggest that 4 Prise 
from their initial values of 0 to final values of i and 2,  respectively, during spin-up). 
In  the stretched co-ordinates, (27 ) ,  (28) become 

EJF,, - EZaFs.,. + 2iF = 2a2EaMs8 - P(7*), 

E~-at3M,8-EaMgt5+ = F,". 

Clearly, for any a > 0, the dominant momentum balance in an asymptotic sense 
(E  +- 0 )  is geostrophic: 

2iF f -2V+2iU = -P(T*), 

which implies not only that the order 1 azimuthal flow obeys the Taylor- 
Proudman constraint (as is seen also from the scaled induction equation), 

av/ag* = 0, 

but also that the radial motion U is zero to leading order (as in the non-magnetic 
problem). Perturbation velocity components of higher order do not satisfy such 
a constraint and can vary appreciably within magnetic diffusion regions. How- 
ever, the diffusive growth and possible interpenetration of magnetic diffusion 
regions is too weak an effect to disturb the basic geostrophic balance which exists 
outside the Ekman-Hartmann layers, so the dominant order 1 process, spin-up, 
is unaffected by the thickness of magnetic diffusion regions. 
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4. Exact Laplace transform solution 
Use of the same Laplace transform notation as in part 1 ( 2 8 ) )  leads to the 

(30 )  

problem, EF" - (8 + 2 i )  P = - 2a2E4P + P(s) ,  
E M ' -  8sM = - EiP', 

P(  f 1, s )  = is-l, M (  & 1, s )  = 

where primes denote differentiation with respect to 1;. The exact solution is 
given by 

In these expressions, a tilda indicates a complex conjugate with s regarded as 
real, and 8 = k(s  + 2i - m2) coth E-tk - m(s + 2i - k2) coth E-&rn, 

D = 2E-*sYf i - ( s+2i )  ( @ - f i 2 ) 8 - ( s - 2 i )  (k2-m2)0, 

k = [%+ (n2- q2)t]*, Re k > 0, (36 )  

m = [n- (n2-q2))]*, Rem > 0, ( 3 7 )  

n = g [ ( l + 6 ) s + 2 a 2 + 2 i ] ,  (38 )  

q = (as)* (s+ 2i)*, Req 2 0. (39 )  

(34 )  

(35 )  

A comparison of (31) - (39)  above with (30) - (35)  of part 1 reveals both similarities 
and differences. The quantities k, m, n, q are identical. The factor 

[(s+ 2 i p +  (8441, 

which gives rise to branch points at  s = 0, - 2i in the semi-infinite problem, is 
now absent, but instead we have the denominator function Dfs). The horizontal 
velocity function now has a part independent of 5 which clearly satisfies the 
Taylor-Proudman theorem and which is closely related to the pressure function 
P(T) .  The spatial dependence is, apart from differences in scaling, again of the 
same exponential type, but both positive and negative exponents occur because 
of the reflexional symmetry about 5 = 0. In  part I, there are no terms comparable 
with (sinhE-&k)-l, (s inhE-h-l ,  and this is a significant new feature. 

A systematic search for the location and type of singularities of these exact 
transform solutions reveals several important facts. In  particular, many inci- 
piently singular points in the s-plane are, in fact, regular points of the solution 
functions. Consider, for example, the branch points of the functions k ,  m at the 
two values of s for which n2 = q2. In  crossing the associated branch cuts, k and m 
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become interchanged but that transformation leaves F, P, ii? unaffected. Also, 
since 0, D, F, P, M are even functions of k and m, there are no branch points at 
the zeros of k or m. Thus, as in Greenspan & Howard, the solutions appear to 
possess no branch points whatever. Furthermore, the functions F, P, a remain 
bounded at values of s, for which k = 0, m = 0, sinhE-*k = 0, sinhE-*m = 0, 
I9 = 0, so there are no poles at  such locations. Of course, the main function of 
interest, P,  does have an isolated simple pole at  s = 0, whose residue yields the 
steady state solution. All other poles arise from the zeros of D, and are discussed 
more fully in 6 5.  

It is not trivial, but none the less straightforward, to  take the non-magnetic 
limit (a -+ 0) of (31) and recover the solution obtained by Greenspan & Howard. 
Also, the steady-state hydromagnetic solution, found as in part 1, is 

_ _  
_ _  - 

- -  

Here it should be noted that this steady state (or long time) behaviour of F arises 
from the space-independent term; the space-dependent parts, which give the 
boundary layers and magnetic diffusion regions, ultimately decay to zero. 

5. Approximate Laplace inversion 
We turn now to  a study of the transform functions in the physically meaningful 

range of parameter space given by 0 < E < 1, 0 < 8 < 1, a < O(1). The basic 
approximation procedure is closely related to that which was successful in 
part 1 ; knowledge of the location of singularities is utilized in choosing contours 
for the inversion integrals, along which simplifying assumptions can be made 
about the various terms that make up the exact solutions. Our main goal is to 
understand the gross behaviour of P for both early times and on the time-scale 
of spin-up. 

The f i s t  stage of approximation involves a Taylor expansion of the functions 
k, m in powers of 8* valid for 8 < 1. Since k, m are identical to those of part 1, the 
expansions are those given in (72, 73)  of that paper, and are valid for the same 
wide range of conditions explained there. To dominant order in 84, 

k s k o  = (s+2a2-2i)*, 1 k = k o  = (s+2a2+2i)*, 

m t m  - [  6s(s+2i) 1 ,  8 f i + f i o =  Ss(s-2i)  * 
[ s  + 2a2- 2 i ]  *I O -  s+2a2+2i 

141) 

With these expressions, it is readily verified that P remains finite in each of the 
following limits : 

k,-+O, L o + O ,  mo+O, G,,+O, m,-+co, rTi,-tco, 

O-to,  8- t  0, O - t c o ,  8+m, sinhE-*lco+ 0, 

sinh E-*mo -+ 0, sinh E-*ko -+ 0, sinh E-*fio --f 0. 

The only singularities therefore, are still poles at  s = 0 and the zeros of D. 
A second approximation, valid for T < O(l) ,  is now introduced in order to 

verify the hypothesis of $ 2  : that, for early times, the flow evolves as the sum 
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of flows due to two boundaries acting in isolation (rapidly propagating waves 
with suitable reflexion properties could vitiate such a conclusion, if present). 
For times T not exceeding order 1, the fundamental inversion contour (a vertical 
straight line anywhere in the right half s-plane) can be deformed, so that it 
indents into the right half-plane only along the segment between the points 
s = 1 3i, thereby avoiding any singularities along the imaginary axis (such as 
at  s = 0, Z i )  by an amount no less than order 1.  We suppose that the other 
singularities (the zeros of D )  are so distributed in the left half-plane, that the 
contour need never approach more closely than order 1 to any of them. Then, 
everywhere on the deformed contour, \k,\ > 1, \m,\ < lk,\, so the following 
approximations are valid: 

D. E. Loper and E. R. Benton 

cothE-#k = 1, sinhE-ik G Bexp (E-Bk,), coshE-ikc= +exp (E-4k0 I[(), 
s+2i-m2=s++i, e ~ ( s + 2 i ) k O ,  

E-40 - (@ - f i 2 )  E-48, D = ZE-+&. 

Introduction of these approximations and (41) into the expression for F leads to 

The branch points which now exist at  s = - 2a2 & Zi arise because the approxi- 
mations above do not always preserve the evenness or oddness of a function with 
respect to k. Effectively, infinite sequences of poles describing damped inertial 
oscillations are replaced by branch cuts (as in Greenspan & Howard). 

The term independent of 6 in (42) is of order E* compared to the others and is 
therefore negligible (reflecting the fact that the core spins up by only an insigni- 
ficanb amount during the first radian or SO of rotation following the impulse). The 
exponential term involving k, describes the development of thin Ekman- 
Hartmann layers on the two boundaries, and is equivalent to the one-plate 
solution under these same approximations (see part 1, (61), (74)). Since 

8 4 s (s+2i )  4 
E-tmo = ( E )  [s+2a2+zi] ’ 

the exponential terms in m, describing magnetic diffusion regions reduce to the 
isolated plate results (part 1, (74)) only if E < 8, but this is just equivalent to the 
requirement that a layer, whose thickness growth-rate is Z(ht)* (i.e. a magnetic 
diffusion region), be thin compared to the plate separation, Zd, after an elapsed 
time of order Q-l (or 7 N 1). In  other words, when magnetic diffusion regions are 
thin compared to the total depth of fluid, then they too develop as they would 
in the absence of the second boundary. Their possible interpenetration (which 
requires sufficiently small 6) is accounted for largely by the factor (sinh E-4mO)-l. 
Even when the two exponentials in sinh E-4 m, overlap, as for example when 
they are each comparable so that this factor cannot be approximated by 
&exp(E-*m,), but rather by E-im,, then the ratio of the coeecient of the 
m-layer exponentials to those of the k-layer exponentials is 

2a2m,/(s + Zi) k, sinh E-*m, = Za2EB/(s + 2i) k,, 
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and this is, in magnitude, much smaller than 1 everywhere on the contour. Hence, 
radial and tangential velocities within magnetic diffusion regions remain weak 
compared to those in Ekman-Hartmann layers even after the magnetic regions 
interact with each other. 

Attention is now directed to an examination of the function F on the anti- 
cipated time-scale of spin-up, which for a < O( 1) is E-*, as in the non-magnetic 
problem. The same expressions for k, m as in (41) are appropriate, but the 
inversion contour must now run much closer to the important singularities at  
s = 0, 2i; in order that exp (ST)  in the inversion integrals be of bounded 
magnitude along the contour, it should indent into the right half-plane by an 
amount no greater than order E4. An approximation is sought uniformly valid 
through times of order E-* only. On this long time scale, the dominant contribu- 
tions to the inversion integrals arise from portions of the contour closest to  the 
imaginary axis. In  fact, as in Greenspan & Howard, the singularities within 
a distance of order E* from the origin are expected to  be most important, so we 
confine attention to the transform functions in such a neighbourhood of s = 0 
by setting 

s = Elis,, where lsll < O(1). 

This effectively filters out of the subsequent analysis all inertial oscillations 
(which arise from the vicinity of s = f Z i ) ,  and can be rationalized heuristically as 
follows. Greenspan & Howard have shown conclusively that both individually 
and collectively such oscillations are unimportant for describing non-magnetic 
spin-up. Furthermore, part 1 (following (67)) demonstrates that ordinarily these 
oscillations damp out even more rapidly when a magnetic field is present. 
A possible exception could be the highly persistent hydromagnetically driven 
inertial oscillations discussed in § 5 of part 1, but such strong vertical motions 
as those are greatly suppressed in the present problem because of the symmetry 
imposed by the second boundary. The only other type of oscillatory motions to be 
expected here, on physical grounds, are Alfvdn modes, but they cannot be 
strongly present, because, when a < O ( l ) ,  the field is relatively weak or the 
distorting effect of rotation is rather strong. A more appropriate remark is that 
in spite of their assumed unimportance from our admittedly limited viewpoint of 
spin-up, these oscillations certainly deserve further study for their inherent 
interest. However, linearity of the present problem suggests that the necessary 
residue calculation implied in such a study will provide terms to be added on to 
the results found below, but it is doubtful whether spin-up itself would be 
seriously affected. The interested reader can find this statement verified in a, 
report by Loper & Benton (1970), where further details are given. 

The main task now is to show that spin-up does proceed at  the same rate 
regardless of the relative magnitudes of E and 8, so long as both are much smaller 
than one. Introduction of (43) into (41), and neglect of terms of order E4 or 
smaller compared to those retained, leads to 

(43) 

k, = p+ iy ,  
m, (1 - ia2)-* 8*Eksk, 

6' = Zik, + 2a2m, coth E-*m,. 
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Equations (44), (45) show that for all a < O(l ) ,  Is1( < O(l) ,  (k,l is an order 1 
constant independent of s,, whereas lmOl never exceeds of order 6&Et, which is 
much less than 1; so in the range of interest lmOl < I k,l. 

Further progress rests on a demonstration that the second term of 8 in (46) is 
always unimportant compared to the first. It clearly vanishes as a + 0; as either 
6 or s, tend to 0, it approaches 2cc2E*, which is negligible compared to Zik,. 
Indeed, only at  values of s1 such that I coth E-tm,] 9 1, could the term in question 
conceivably be important. Now since 

]Goth ( ~ + i y ) l  = 

I coth (x + i y )  I has large values only near the imaginary axis, dropping rapidly to 
order one in magnitude everywhere once 1x1 exceeds 1 or so. In  terms of sl, 
coth E-tm, is infinite only at  the isolated values given by 

(47) 

where N is an integer. Since these points lie along a ray in the second quadrant 
of the 8,-plane which makes an angle tan-la2 with the negative real axis, the 
path of integration (which is in the right half-plane along Res, = O(1)) avoids 
the places where lcoth E-am,] 1. Furthermore, the resulting infinities of B for 
these values of s, are regular points of 3. It will soon be seen that the constant, 
order 1 part of 8, due to the term 2ik0 is in fact what produces a simple zero of D. 
The second term of 8 is incapable of contributing significantly to spin-up, because 
of the topology of the complex coth function and the location of the contour. 
(In Loper & Benton (1970), it is shown that a discrete set of poles of B does exist, 
because D = 0 at  values of s1 close to those in (47); however, the residue calcula- 
tion given there reveals only weak velocities compared to the spin-up mode.) 
With the approximation, 2ik, 

it is easily seen that D reduces to  

s1 = - N2n2( 1 - ia2) E* 6-l, 

(48) 

(49) 

2i(p+iy), 

D + 8(p2+y2)  (s1+P) = 8(P2+y2)E-*(s+pE*). 

Since no reference needed to  be made in the preceding argument to the relative 
ordering of E ,  6, (49) shows that D has a simple zero at  the expected location of 
the spin-up pole, regardless of the thickness of magnetic diffusion regions. The 
final approximate transform function, valid on the time scale of order E-4, and 
with initial boundary-layer development and short period oscillations omitted, 
is now obtained by introducing (43), (44)) (45), (48), (49) into (31)) and ignoring 
terms small compared to those retained: 

m c ,  4 = Bl(4 + &(5, 8) + P3(Q 81, 

where 
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The inversion of (51) gives the dominant spin-up behaviour of the fluid outside of 
Ekman-Hartmann layers as anticipated in 8 2: 

E;(T) = i( 1 - exp ( - PEb)) .  (54) 

The imaginary part of (54), representing the inviscid azimuthal velocity, is 
plotted versus time in figure 3 to demonstrate the more rapid fluid response with 
increasing magnetic interaction parameter a. The inversion of (52) clearly shows 
that quasi-steady Ekman-Hartmann layers on each boundary, like that of part 1 
(e.g. (53)), slowly decay as the fluid spins up: 

Although (53) can be inverted, with mo as given in (45), it would be misleading 
to do so, because we have not proven that (53) is a valid approximation for the 

E*T 

FIGURE 3. Inviscid azimuthal perturbation velocity V ,  versus spin-up time E h ,  for various 
values of magnetic interaction parameter a. 

magnetic diffusion regions. Only the dominant order one phenomena (namely, 
spin-up and Ekman-Eartmann layers) are certain to be given correctly by our 
approximation procedure; a much more subtle theory, correct to order Et  or 6)  
is required t o  elucidate the details of the weak velocities induced in these magnetic 
diffusion regions. 

On the other hand, it is a simple matter to obtain the leading term in the radial 
velocity field outside of both Ekman-Hartmann layers and magnetic diffusion 
regions. The flow there is basically inviscid and current-free, so, by (13), 

2u=-v,. 
Together with (54) this implies 
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and shows that U obeys the Taylor-Proudman constraint to leading order, in a 
current-free core. The Ekman suction velocity accompanying this radial motion 
is (from (1 7))  

These last two results are hydromagnetic extensions of the approximate solutions 
found by Greenspan & Howard. 

W(c, r )  = BEtcexp (-pEb). (57) 

6. Summary and conclusions 
Approximate inversion of an exact Laplace transform solution has shown that 

the dominant linear spin-up of an incompressible, electrically conducting fluid 
confined between infinite, flat insulating plates, is describable (in terms of 
dimensional quantities) by 

(58) 
where 

and B, is the imposed axial magnetic field. This formula for spin-up holds for the 
fluid outside of Ekman-Hartmann boundary layers and is valid (in an asymp- 
totic sense) for small Ekman number E, small magnetic Prandtl number 6, and 
for values of magnetic interaction parameter a of order 1 or less. (The function in 
(58), which is multiplied by the small parameter E ,  is plotted in figure 3.) 

The spin-up time is always shorter than in the non-magnetic problem. However, 
the form of P(a) is such that a weak magnetic field is rather ineffective in pro- 
moting spin-up. For the larger values of u within the range of validity, p - $2 a;  
so the dimensional spin-up time is then 

v(r, x ,  t )  . 0 = r Q { l +  €[I - exp [ -P(vQ/da)& t]] ) ,  

p = [a2 + (1 + a4)4]4, a = (aBi /2pQ)* ,  

t, N (d2p/vaB;)4,  (59) 

which is independent of angular velocity, and increases as the first power of 
density (in contrast with non-conducting spin-up). It is perhaps surprising that 
for even fairly strong fields, doubling the field strength only halves the spin-up 
time. 

Although the time required for the fluid to effectively reach the new angular 
velocity is basically independent of the thickness of magnetic diffusion regions, 
the mechanism of spin-up is strongly affected by these layers. Their dimensional 
thickness being 2(ht)*, where h = l / p a  is the resistivity, they grow to a fraction 
of the total fluid depth during the spin-up given by P-*E*G-*, which can take on 
a wide range of values. When the layers remain thin throughout spin-up, they 
cause the Ekman suction velocity outside of them to be amplified somewhat over 
the classical value; spin-up of the essentially inviscid, current-free core then 
occurs by secondary flow, vortex stretching, and conservation of angular 
momentum (figure 1). If, on the other hand, magnetic diffusion is sufficiently 
rapid that electric currents permeate the entire fluid during spin-up, then it is 
accomplished by a weakened version of non-magnetic spin-up, augmented by an 
accelerating tangential body torque of hydromagnetic origin; specifically, a 
radially inward perturbation electric current interacts with the impressed axial 
magnetic field to produce an azimuthal component of the j x B force (figure 2) .  
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